Yarn-cake Winder Step 4

I am inching toward completion at this point.

Yarnwinder1.jpg Here you see the three gears — the cranking gear on the right, the central gear in the middle, and the 12P gear on the base of something that looks like a striped lawn chair.  That’s the base for the spindle.

You also see the yarn feed post, on the extreme left of the assembled machine; and the two built-in C-clamps along the bottom.  The only thing missing at this point is the arbor or pivot that connects the 12P gear to the spindle support base. A friend of mine is using his angle grinder to grind that steel pin to the right shape, this afternoon.  I hope to have it later today.

Yarnwinder2.jpgAnd here’s that spindle support base, now attached in the right place and ready for the spindle to be attached.  It looks a little like a striped lawn chair.  For this photo, I’ve put in a spare bit of steel rod for the arbor, and I’m using that to test-crank the gears, and figure out where to concentrate my sanding effort to get the gears to the right shape.

Hint? Everywhere. Everywhere needs sanding.  I am not a good scroll-saw-er yet, and the result is that my gears are wildly irregular on nearly every gear.  I have a choice at this point.  I can just keep cranking the gears until everything is worn down to the right smoothness by raw friction.  Or I can sand each tooth meticulously until every tooth meshes perfectly with every other tooth.  Or I can choose a third-option position, halfway between those two options or on either side of half-way.  The more sanding I do ahead of time, the less sawdust and sand will be in my finished yarn product.  The less sanding I do ahead of time, the more sawdust and sand will be in my finished product, and the harder it will be to wind a skein of yarn into a yarn cake.  Even so, I may go for this option.Yarnwinder3.jpg

The final picture is the completed elements of the yarn-cake winder (excepting that one arbor, and a couple of small pads for the C-clamps.  The spindle is the large wooden thing; the spindle base is the thing in the clamp, and then the machine itself.  You can see a pencil on the right for rough/approximate scale.  The spindle has a skateboard bearing inside of it, provided as a result of a trip to Cutting Edge in Berlin, CT.

I got into knitting in part because of Deb Castellano of the blog Charmed Finishing School (and her store, the Mermaid and the Crow/La Sirene et Le Corbeau).  It pleases me no end to create a piece of machinery using my newfound carpentry skills, that will allow me to practice more effectively the art that she connected me to in the first place.

But once again, why knitting? Why machinery? Why include textiles and knitting and yarn-work at all in a MakerSpace? I would hope at this point, after three prior separate discussions of the building of this machine, that this would be obvious. Even with someone else’s plans in my hands, I’ve had to work through design problems, study drawings, make sketches, and drive my way through the tool use necessary to build this machine (and the yarn-swift that accompanies it).  Without these machines, I’d have a much harder time working with skeins of yarn. With them, I have a much easier time making my own yarn, dyeing my own yarn, winding and knitting (or crocheting, or braiding) my own yarn. This device is a critical piece of the technology set for string and yarn-arts.

What is a technology set?  A technology set is all of the technical equipment necessary to oversee a process of construction from raw materials (or raw-er materials) to finished product.  For yarn, that set looks something like this:

  • Carding combs
  • drop spindle or spinning wheel or great wheel
  • yarn swift
  • dyeing vats and dyes and mordants
  • yarn-cake winder (this device)
  • knitting needles
  • braiding disk
  • lucet
  • crocheting hook
  • naalbinding needle

With these ten tools, it’s possible to take a bundle of raw wool and turn it into a scarf or a hat or a length of rope akin to paracord, or a colored braid.  The technology set teaches ten different skills, and helps students understand ten different processes. None of the technology is difficult to understand; the technical processes are open and transparent; and they are hand-skills which can be replicated (much faster but much more opaquely) by machine.  They take carpentry skills to make objects that are used for working with string, they demonstrate the principle that Tools Make Tools Make Things, and they demonstrate to students a skill-set that allows them to extrapolate and develop an understanding of how any raw material is turned into a finished product.

 

Liked it? Take a second to support Andrew on Patreon!
Become a patron at Patreon!

One comment

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.